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Abstract. A three-level atomic system in V-configuration (interacting with a single mode laser field) with
parallel transition dipole moments exhibiting spontaneously generated coherence due to quantum inter-
ference of decaying channels is considered here for the purpose of storing light pulses. This system is
equivalent to (with some restrictions) another three-level system in which ground state is coupled with one
of the upper states but the upper states are coupled through a DC field and hence can be used to store
electromagnetic pulse using the concept of dark-state-polariton.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; elec-
tromagnetically induced transparency and absorption – 42.65.Tg Optical solitons; nonlinear guided waves
– 42.50.Ct Quantum description of interaction of light and matter; related experiments

Recently, propagation of electromagnetic pulses and their
storage have been extensively studied using a three-level
atomic medium in Λ-type configuration [1]. The three-
level atomic medium in Λ-type configuration irradiated by
a strong coupling field on one of its transitions becomes
transparent for a signal field (on another transition) due to
electromagnetically induced transparency (EIT) [2]. Adia-
batically turning off the coupling field allows signal field to
be completely absorbed by the atomic medium. The phe-
nomenon of EIT causes extraordinary change in disper-
sive properties of the atomic medium [3] which drastically
alters the velocity of light pulses [4] and can store such
pulses as induced atomic coherence or polarization in the
medium [1]. In other words, by changing the coupling field
slowly towards zero it is possible to store the signal pulse
in the atomic medium and by reapplying (i.e., increasing)
the coupling field in the same manner the stored signal
field can be released back. This phenomenon of storing the
optical pulse in an atomic ensemble has been discussed in
terms of the ‘dark state polaritons (DSP)’ which describes
entangled state of photon and atomic polarization [5]. Re-
cently, experimental realizations of such DSP have been
demonstrated [1].

A three-level atomic or molecular systems in
V-configuration interacting with the vacuum field such
that dipole moments of two transitions (from ground state
to two upper states) being parallel or nearly parallel can
control the spontaneous decay of two excited states due
to spontaneously generated coherence (SGC) or quantum
interference of decaying channels [6]. Many interesting fea-
tures arising due to the SGC in a number of atomic and
molecular schemes were reported in recent past which
could find some very useful applications in laser spec-
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troscopy and other areas of quantum optics. Some such
interesting effects are quenching of spontaneous emission,
ultra narrow spectral profiles, phase dependent popula-
tion inversion, phase control of spontaneous emission, and
controlling optical bistability to optical multistability be-
havior etc. [7–9]. We propose that this system can also
be used for storing signal field and their retrieval (on de-
mand), i.e., like a quantum field storage device by manipu-
lating the degree of SGC in adiabatic manner. Though the
three-level systems in V-configuration with parallel dipole
moment exhibit many interesting effects but their prac-
tical realization is very difficult as the atomic or molec-
ular systems in V-configuration normally posses dipole
moments of two transitions perpendicular to each other.
Some experimental efforts were made in past to generate
SGC from such system [10] but could not reproduce con-
sistent results [11]. Some related analysis for this kind of
experiment was also provided [12].

Many other schemes were proposed to circumvent the
experimental difficulties in obtaining the parallel dipole
moments [13]. Very recently, another proposal has been
given by Ficek and Swain [14] to obtain SGC from a three-
level system in V-configuration without needing the par-
allel dipole moments. This scheme consists of a three-level
system with perpendicular dipole moments for the transi-
tions coupling the upper nearly degenerate levels with the
ground level. One of the transitions is interacting with
a laser field while the upper two levels are coupled by
a DC field. It has been demonstrated that this system
is equivalent to the usual three-level atomic system in
V-configuration with parallel dipole moments of transi-
tions. Such a system can be used for storing signal pulses
in the atomic medium and can be manipulated for re-
trieval of pulses by adiabatically changing either decay
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Fig. 1. (a) Schematic diagram of a three-level system in
V-configuration interacting with a laser of frequency ν coupled
to both the atomic transitions. The associated Rabi frequen-
cies (radiative decay constants) for these transitions are Ω2, Ω3

(γ2, γ3), respectively. (b) Schematic diagram of an equivalent
three-level system . The laser of frequency ν is coupled to only
one of the transitions (the symmetric state |p〉) while a DC field
couples the upper two states.

mechanism of lower upper-level or the DC field. In the
following we discuss how do we achieve this.

First we describe the dynamical evolution (with and
without SGC) of a three-level atom in V-type configura-
tion (Fig. 1a). The system consists of a lower level |1〉
and two non-degenerate upper levels |2〉 and |3〉 interact-
ing with a laser field of frequency ν (we call it quantum
field Ê). The electric dipole moments of transitions be-
tween levels |1〉 and |2〉 (|3〉) is �µ21 (�µ31). The upper lev-
els can spontaneously decay to the ground level but any
transition between upper levels is forbidden. In the frame
rotating with laser frequency ν the density operator equa-
tion for such system is given by

ρ̂ = −i[ρ̂, Ĥ ] + �Lρ̂, (1)

in which the Hamiltonian is

Ĥ = (∆− ω23)B̂22 +∆B̂33 +
(
Ω2B̂21 +Ω3B̂31 +H.c.

)
,

(2)
and

�Lρ̂ =
1
2
γ2

(
2B̂12ρ̂B̂21 − B̂22ρ̂− ρ̂B̂22

)

+
1
2
γ3

(
2B̂13ρ̂B̂31 − B̂33ρ̂− ρ̂B̂33

)

+
1
2
γ23

(
2B̂12ρ̂B̂31 − B̂32ρ̂− ρ̂B̂32

)

+
1
2
γ23

(
2B̂13ρ̂B̂21 − B̂23ρ̂− ρ̂B̂23

)
. (3)

Here Bmn = |m〉〈n| is the ladder operator, ∆ = ω31 − ν
is the detuning of the the quantum field frequency from
the transition frequency of |1〉–|3〉, ω23 = ω31 − ω21 is the
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Fig. 2. (a) Absorption (in arbitrary units) curves with (solid
curves, γ23 =

√
γ2γ3) and without (dashed curve, γ23 = 0)

SGC. The other parameters are γ2 = γ3 = γ = 0.5, ∆ = 0.5,
Ω1 = Ω2 = Ω = 0.05. (b) Dispersion (in arbitrary units) curves
with (solid curves, γ23 =

√
γ2γ3) and without (dashed curve,

γ23 = 0) SGC. The other parameters are same as in (a).

frequency difference of the upper two levels. γi (i = 2, 3)
is the spontaneous decay constants of upper levels |i〉 to
the ground level |1〉. The decay constant arising due to
the quantum interference of the two decaying channels is
given by

γ23 =
2
√
ω3

31ω
3
21

3�c3
�µ21 · �µ31 = q

√
γ2γ3. (4)

The term γ23 depends on the cosine of the angle between
two dipole moments through the parameter q. If we have
parallel dipole moments then q = 1 and the quantum in-
terference or the SGC is maximum. On the contrary, for
the perpendicular dipole moments we have q = 0 and the
SGC vanishes.

We plot absorption-dispersion spectra (under steady
state condition) in Figure 2 with and without SGC as
a function of detuning of quantum field by numerically
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solving equation (1). The parameters chosen are γ2 = γ3 =
γ = 0.5, Ω2 = Ω3 = Ω = 0.05 and |�µ21| = |�µ31|, resulting
into group velocity slowing down. If the dipoles are par-
allel to each other we observe cancellation of absorption
at ∆ = ω23/2 and sharp variation in the refractive index
near ∆ = ω23/2. However, if the dipoles are orthogonal to
each other then �µ21 · �µ31 = 0, and we do not observe can-
cellation of the absorption and no sharp variation of the
refractive index near ∆ = ω23/2. Thus it could be possible
to use SGC as a control mechanism to vary the group ve-
locity of the light [4] in the atomic medium for storing the
signal pulses [5]. However, as discussed above there are
practical difficulties in realizing the parallel dipole mo-
ments (and achieving adiabatic control of SGC could be
much difficult) so we look for an alternative technique us-
ing usual perpendicular dipole moments as suggested by
Ficek and Swain [14] (and described here briefly for the
sake of completeness) for realizing the quantum storage of
pulses.

In the following we assume γ2 = γ3 = γ and Ω2 =
Ω3 = Ω, for the sake of simplicity and define the symmet-
ric and antisymmetric superposition of the upper states |2〉
and |3〉 as

|p〉 =
1√
2

(|2〉 + |3〉),

|m〉 =
1√
2

(|2〉 − |3〉). (5)

Under the new bases of symmetric and antisymmetric
states the master equation (1) can be recast into a slightly
different form

˙̂ρ = −i
[
ρ̂, Ĥ

]
+

1
2
γ(1 + q)

(
2B̂1pρ̂B̂p1 − B̂ppρ̂− ρ̂B̂pp

)

+
1
2
γ(1 − q)(2B̂1mρ̂B̂m1 − B̂mmρ̂− ρ̂B̂mm). (6)

Correspondingly, the Hamiltonian has also changed to

Ĥ = ∆′
(
B̂pp + B̂mm

)
− 1

2
ω23

(
B̂pm + B̂mp

)

+
√

2Ω
(
B̂p1 + B̂1p

)
, (7)

with ∆′ = ∆− ω23/2.
From the transformation it is clear that the laser field is

coupling only to one of the new upper levels (the symmet-
ric state) with the ground level and the new upper-levels
are decaying to the ground level independently with two
different decay rates as clearly seen from second and third
term of equation (6). For parallel dipole moments the pa-
rameter q ∼= 1 and the third term in equation (6) vanishes,
which implies that antisymmetric state is metastable. If
the upper states |2〉 and |3〉 becomes degenerate then
there is no coupling between symmetric and antisymmet-
ric states. We can get another physical picture from this
model by neglecting the term∆′Bmm. The system now be-
haves as a three-level configuration in which the ground
state |1〉 is connected to the upper level |p〉 by the laser
field detuned from resonance with this level by ∆

′
and |p〉

is also coupled with level |m〉 by a DC field (Fig. 1b). We
can relabel the ground level |1〉 by |g〉, the quantum field
(in Rabi frequency) as gε̂ and rewrite the Hamiltonian as

Ĥ = ∆′B̂pp +D(B̂pm + B̂mp) + gε̂(B̂pg + B̂gp), (8)

with damping terms in the Liouvillean operator given by

�Lρ̂ =
1
2
γp

(
2B̂gpρ̂B̂pg − B̂ppρ̂− ρ̂B̂pp

)

+
1
2
γm

(
2B̂gmρ̂B̂mg − B̂mmρ̂− ρ̂B̂mm

)
. (9)

In equation (8), D describes the Rabi frequency of DC
field which couples the upper levels and g is the atom-
field coupling constant (=℘

√
ν/(2�ε0V )), ℘ is dipole mo-

ment of |g〉 to |p〉 transition, V is quantization volume.
We define quantum field in the slowly varying vari-
able as Ê(z, t) =

√
�ν/2ε0V ε̂(z, t)e−

iν
c (z−ct). For de-

scribing the quantum properties of the medium we need
collective slowly varying atomic operators B̂xy(z, t) =
(1/Nz)

∑Nz

j=1 |xj〉〈yj |e−ωxyt = (1/Nz)
∑Nz

j=1 B̃
j
xy(t)e−ωxyt

averaged over small macroscopic volume containing Nz �
1 atoms at position z. The interaction Hamiltonian can be
appropriately recast in the continuous form as

Ĥint = N

∫
dz

L

(
gε̂(z, t)B̂pg +DB̂pm +H.c.

)
, (10)

in which N is number of atoms and L is the length of the
sample. Note that the new decay constants are related to
the orientation of the two dipole moments by

q = cos(θ) = (γp − γm)/(γp + γm). (11)

As mentioned earlier, q is a measure of quantum interfer-
ence. If γm � γp then the level |m〉 behaves as metastable
level and this happens only when we have maximum quan-
tum interference or SGC (q ∼= 1) in the system (of Fig. 1a).
This system (Fig. 1b) defined by equations (6) and (7), is
then unitarily equivalent to the previous system (Fig. 1a)
where dipoles are presumed to be parallel. Using equa-
tions (8) and (9) we can write down explicitly the equa-
tion of motion for each component of the density operator
in the following way:

˙̃Bpp = −igε̂(B̃gp − B̃pg) − iD(B̃mp − B̃pm) − γpB̃pp,

˙̃Bmm = iD(B̃mp − B̃pm) − γmB̃mm,

˙̃Bgg = igε̂(B̃gp − B̃pg) + γpB̃pp + γmB̃mm,

˙̃Bpg = −(i∆′ + γp/2)B̃pg − igε̂(B̃gg − B̃pp) − iDB̃mg,

˙̃Bmg = −(i∆′ + γm/2)B̃mg + igε̂B̃mp − iDB̃pg,

˙̃Bpm = −(γp/2 + γm/2)B̃pm− igε̂B̃gm− iD(B̃mm− B̃pp).
(12)

The field propagation equation (in direction z) for the
quantum field in slowly varying amplitude approximation
goes as

(
∂

∂t
+ c

∂

∂z

)
ε̂(z, t) = igNB̃gp(z, t). (13)
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In the low intensity approximation of the quantum field,
i.e., if the ratio of Rabi frequencies gε̂/D � 1, it is
easy to show that system described by equation (12) ex-
hibit prominent electromagnetically induced transparency
(EIT) provided one can manipulate the decay con-
stant γm. For the weak quantum field and using pertur-
bation theory in equation (12), it is easy to show that

B̃(1)
gp ∼ igε̂

γp/2 − i∆′ + D2

γm/2−i∆′
. (14)

Clearly, equation (14) exhibits EIT kind of behavior (as
depicted in Fig. 2) and such behavior is very sensitive
function of γm. For a fixed γP , if the quantum interfer-
ence is maximum (cos(θ) ∼= 1) then γm

∼= 0 and equa-
tion (14) shows maximum zero absorption (or prominent
EIT behavior) at resonance which becomes less and less
prominent as cos(θ) approaches 0 or there is no SGC in
the system. Hence, SGC can control the EIT-like charac-
teristics of the system and should be useful in storage of
quantum field in such atomic ensembles. However, to real-
ize manipulation of SGC in any practical physical system
is very difficult and alternative to this could be the ma-
nipulation of D. If there is no DC field D then also zero
absorption at resonance is withdrawn. In other words, the
interaction between symmetric and antisymmetric states
vanishes. We thus propose that such a system is suitable
for storing the electromagnetic field pulses by manipula-
tion of the DC field very slowly. In the following we give
essential details to show how this system acts [5] as quan-
tum memory for the sake of completeness. We use per-
turbation theory with the assumption that B̃gg = 1 and
remaining all other elements equal to zero in zeroth order.
Further to this we set γm ∼ 0 (meaning state |m〉 to be
metastable in the system of Fig. 1b), which implies max-
imal quantum interference, i.e., cos(θ) ∼= 1 in the original
system of Figure 1a, useful in avoiding information losses
and one can have a reasonable storage timing. Then in
first order (assuming ∆′ = 0) it is easy to show that

B̃gp =
−i
D

∂

∂t
B̃gm,

B̃gm = −gε̂
D

− i

D

[(
∂

∂t
+
γp

2

) (−i
D

∂

∂t
B̂gm

)
+ F̂gp

]
,

(15)

in which we have incorporated the δ-correlated Langevin
noise operator F̂pg such that 〈F̂xy(t)F̂x′y′(t′)〉 ∼ Kδ(t−t′)
etc., where K is a constant. We further assume adiabatic
condition [5] or slow change for D in time such that we
have the surviving term

B̃gm
∼= −gε̂(z, t)

D
(16)

and the propagation equation becomes
(
∂

∂t
+ c

∂

∂z

)
ε̂(z, t) = −g

2N

D2

∂

∂t
ε̂(z, t). (17)

Which states that there is group velocity modification of
the quantum field given by

vg =
c

(1 + g2N/D2)
. (18)

If we introduce a quantum field assuming the following
transformation

ψ̂(z, t) = cos(φ)ε̂(z, t) − sin(φ)
√
NB̃gm(z, t), (19)

where

cos(φ) =
D√

D2 + g2N
,

sin(φ) =
g
√
N√

D2 + g2N
,

then it is straightforward to show [5] that ψ̂(z, t) satisfy
the following equation under the adiabaticity condition

(
∂

∂t
+ c cos2(φ)

∂

∂z

)
ψ̂(z, t) = 0, (20)

which describes shape preserving propagation with veloc-
ity v = vg(t) = c cos2(φ). The name given to ψ̂(z, t)
is a polariton (or Bosonic quasi particle) as it satisfies
the Bosonic commutation relationship [5]. Also, ψ̂(z, t)
are eigen functions of the interaction Hamiltonian with
eigen values zero and for this reason the quasi-particle are
called by dark-state-polariton (DSP). The DSP is the key
element of quantum memory. By adiabatic change of φ
from 0 to π/2 it is possible to decelerate and stop an input
quantum field pulse. By doing so the quantum field of the
light is mapped onto collective polarization of the atomic
medium. The DSP can be accelerated back to the speed
of light c by re-changing the φ very slowly and thus the
stored polarization state of the atomic system transferred
back to the field. The adiabatic variation of φ is provided
by adiabatically varying the Rabi frequency D. Since in
the model under discussion, D is related to a DC field,
so by changing DC field in very slow manner one can get
the desired variation of φ to store light pulse in the atomic
medium and their retrieval using the concept of DSP. This
means that the system which is unitarily equivalent of a
V-system with SGC can be used for storing and retrieval
of light pulses with the concept of DSP.

In conclusion, we have proposed a scheme utiliz-
ing spontaneously generated coherence (SGC) for stor-
ing light pulses in an ensemble of three-level system
in V-configuration. However, the practical realization of
the SGC scheme is difficult so we adopt the alternative
methodology of using three-level system with a DC field,
which is unitarily equivalent to our original scheme and
very much similar to reference [14] with lower upper
level to be metastable (meaning almost maximum SGC
in the original scheme) to have reasonable storage time
for the information. Such a scheme can easily be real-
ized using rubidium atoms [15] or solid state system of
Pr3+:YAlO3 [16].
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